|
|
|||||
Органічні сполуки: нуклеїнові кислотиНуклеїнові кислоти вперше виявлено в ядрі клітини, звідки й походить назва цих сполук (від лат. nucleus - ядро). До складу молекул нуклеїнових кислот, крім органогенних елементів (С, Н, О, N), неодмінно входить фосфор (Р). Нуклеїнові кислоти - це біополімери, мономерами яких є нуклеотиди (від лат. nuсleus - ядро). Молекула нуклеотиду складається із залишків таких компонентів:
Схема молекули нуклеотиду (схема 1): Крім нуклеотидів, що входять до складу нуклеїнових кислот, неодмінним компонентом будь-якої клітини є вільні нуклеотиди. До складу вільних нуклеотидів входять, крім азотистої основи і пентози, три залишки фосфорної кислоти, які послідовно сполучаються. Причому друга і третя групи фосфорної кислоти приєднуються до нуклеотиду особливими зв' язками, у яких запасається енергія. Ці зв' язки називають макроергічними (від грецьк. makros - великий, ergon - робота) і позначаються значком ~ . При розриві звичайного ковалентного зв'язку вивільняється 12 кДж/моль, а при розриві макроергічного зв'язку - 33 кДж/моль. Саме макроергічні зв' язки в нуклеотидах використовуються для запасання енергії в ході обміну речовин. Найчастіше роль акумулятора енергії виконує аденозинтрифосфат (АТФ). АТФ складається з азотистої основи - аденіну, пентози - рибози і трьох залишків фосфорної кислоти (фосфатів), які послідовно сполучаються макроергічними зв' язками. Схема молекули АТФ (схема 2): Будь-яка хімічна реакція, що потребує затрат енергії, пов'язана з відщепленням одного залишку фосфорної кислоти в молекулі АТФ і перетворення її на аденозиндифосфат (АДФ). Накопичення енергії в клітині, навпаки, відбувається за рахунок перетворення АДФ на АТФ. Мононуклеотиди (нуклеотиди, які містять лише один залишок фосфорної кислоти), так само, як амінокислоти і моносахариди, здатні реагувати між собою. Перебіг такої реакції супроводиться виділенням молекули води і утворенням міцного ефірного зв' язку. Сполучною речовиною між нуклеотидами слугує залишок фосфорної кислоти, що скріплює пентози сусідніх нуклеотидів, формуючи полімер - полінук-леотид, який звичайно називають нуклеїновою кислотою. Вона може містити від кількох сотень до кількох мільйонів нуклеотидів. Полінук-леотиди мають суворо лінійну структуру ланцюга. Маса нуклеїнових кислот, як правило, значно вища від маси білків. Залежно від виду пентози, що входить до складу нуклеотиду, розрізняють два типи нуклеїнових кислот: дезоксирибонуклеїнову (ДНК) та рибонуклеїнову (РНК). До складу ДНК входить залишок дезоксирибози, а РНК - рибози. У молекулі ДНК містяться залишки таких азотистих основ: аденіну, гуаніну, цитозину і тиміну. У молекулі РНК містяться залишки таких азотистих основ: аденіну, гуаніну, цитозину і урацилу. Отже, до складу молекули ДНК і РНК входить по чотири типи нук-леотидів, які відрізняються за типом азотистої основи. Дезоксирибонуклеїнова кислота (ДНК) зосереджена в ядрі, її практично немає в цитоплазмі клітини. Цей тип нуклеїнових кислот утворює дуже великі молекули (масою до 100 000 000). Вміст ДНК в ядрі клітини постійний, вона виконує єдину функцію - зберігає генетичну інформацію. Ген (від грец. genos - походження) - це ділянка молекули нуклеїнової кислоти, яка визначає спадкові ознаки організмів.
Таке співвідношення азотистих основ у молекулі ДНК дістало назву правила Чаргаффа, або правила еквівалентності. Це відкриття сприяло встановленню просторової структури ДНК (рис.1) і визначенню її ролі в перенесенні спадкової інформації від материнської клітини до дочірньої. 1953 року американські вчені Джеймс Уотсон і Френсіс Крик довели, що молекула ДНК складається з двох з'єднаних полінуклеотидних ланцюгів, які являють собою спіраль, закручену вправо. Діаметр спіралі ДНК дорівнює 210-9 м, а відстань між сусідніми нуклеотидами - 0,34 o 10-9 м. На один виток спіралі припадає 10 нуклеотидів. Рис.1. Просторова структура ДНК Полінуклеотидні ланцюги сполучаються водневими зв'язками, що виникають між азотистими основами, розміщеними навпроти одна до одної. Між аденіном і тиміном утворюються два водневих зв'язки, а між гуаніном і цитозином - три. Водневі зв'язки дуже слабкі, але завдяки багаторазовому повторенню вони утворюють дуже міцну структуру, яка водночас є лабільною, що надає спіралі ДНК можливості легко розкручуватися, а потім знову швидко відновлювати дволанцюгову структуру. Молекули А-Т і Г-Ц ніби доповнюють одна одну. Здатність доповнювати одна одну, притаманна поверхням хімічних сполук, що взаємодіють, називається комплементарністю (від лат. komplementum - доповнення). Схема будови подвійної спіралі ДНК (схема 3). Молекули ДНК, так само як і білки, утворюють кілька рівнів просторової організації:
Схема 3. Схема будови подвійної спіралі ДНК (на схемі фосфат позначено літерою Р). ДНК, як і білки, можуть денатурувати (втрачати геометричну форму і розпадатися на одинарні ланцюги) під впливом різних чинників. Цей процес відбувається при температурі +70°С, - значно вищій від температури денатурації білків, і тому називається плавленням. За певних умов можливе й відновлення природної структури - ренатурація. Процес синтезу ДНК розпочинається перед поділом клітини і зумовлений складанням нового полінуклеотидного ланцюга за матрицею старого ланцюга. Цей процес називається реплікацією (від лат. герігсаґго - відбивати) і відбувається в такій послідовності:
Схему процесу реплікації подано на рис. 2. Синтез полімерів, коли один ланцюг слугує еталоном, матрицею для іншого, називається матричним синтезом. Особливостями цього синтезу є точність копіювання і висока швидкість перебігу реакцій. Висока точність реплікації досягається завдяки комплементарності азотистих основ. Надійність копіювання - це надзвичайно важлива властивість процесу реплікації, бо помилки в копіюванні нуклеотидних послідовностей ДНК призводять до помилкового синтезу ферментів, що неминуче порушує регуляцію основних функцій організму, наслідком чого є зниження його життєздатності. Ці порушення є спадковими. А - дволанцюгова молекула ДНК: 1 - перший ланцюг ДНК; 2 - другий ланцюг ДНК; Б - утворення реплікативної вилки; В - синтез комплементарних ланцюгів: 3 - нуклеотиди, які добудовують комплементарний ланцюг ДНК; Г - синтезовані дві однакові молекули ДНК. Рибонуклеїнові кислоти (РНК) містяться як в ядрі клітини, так і в цитоплазмі, і відзначаються незначними розмірами - від 75 до кількох тисяч нуклеотидів. Молекули РНК, на відміну від ДНК, складаються лише з одного ланцюга (схема 4). Схема 4. Схема будови РНК (на схемі фосфат позначено літерою Р). Відомо три основні типи РНК:
Усі типи РНК синтезуються на молекулах ДНК у процесі транскрипції (від лат. transcriptio - переписування). Ферменти розплітають спіраль ДНК на невеликій ділянці, пересуваються уздовж однієї нитки ДНК і послідовно створюють комплементарну нитку РНК. Схематичне зображення процесу транскрипції подано на рис. 3. Відмінність транскрипції від реплікації полягає в тому, що навпроти А в ланцюгу ДНК в РНК розміститься У, а не Т. Усі типи РНК беруть тільки в певному, але надзвичайно важливому для життя клітини процесі - біосинтезі білка. Він забезпечує оновлення білків, ріст і функціонування клітин. Питання для самоперевірки
Цікаво знати, що - Військо давньогрецького полководця Олександра Македонського завоювало півсвіту. Здавалося, ніщо і ніхто не може зупинити переможної ходи війська. Та от солдат почали косити шлункові захворювання. Проте найдивнішим було те, що офіцери харчувалися тими самими продуктами, що й солдати, але майже не хворіли. Армія змушена була безславно повернутися додому. Довгі роки учені шукали розгадку: чому ж хворіли переважно солдати? І нарешті висунули таку версію: солдати харчувалися з олов'яного посуду, а офіцери - зі срібного. Вода здатна в мізерних порціях розчиняти обидва метали. Але срібло, "розчиняючись", має здатність знезаражувати воду, вбиваючи бактерій. Ось чому офіцери хворіли значно менше, ніж солдати. З історії науки - Квіти здатні змінювати забарвлення за наявності кислот та основ. Таку властивість помітив англійський учений Роберт Бойль (16171691). А сталося це цілком випадково: коли букет фіалок полежав у його лабораторії поруч із хлоридною кислотою (HCl), квіти набули червонуватого кольору. Роберту Бойлю належить й термін "індикатор" (від лат. indicator - показник). Життєві поради - Американські вчені дійшли висновку, що люди, які сивіють до 40 років, страждають від нестачі кальцію в організмі. Серед інших проявів браку кальцію в організмі - схильність до переломів кісток, остеопороз, дефекти зубної емалі, тривала втома, сонливість, що часто переходить в апатію або навіть у депресію. |
<< | ЗМІСТ | >> |
---|